An extremal problem for least common multiples

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Least Common Left Multiples

also Selecta, Paris, 1939, pp. 203-233. 5. G. de Rham, Sur Vanalysis situs des variétés à n dimensions, J. Math. Pures Appl. vol. 10 (1931) pp. 115-200. 6. H. Hopf und H. Samelson, Ein Satz iiber die Wirkungsrdume geschlossener Liescher Gruppen, Comment Math. Helv. vol. 13 (1941), pp. 240-251. 7. E. Stiefel, Ueber eine Beziehung zwischen geschlossenen Lie'schen Gruppen und. . . , Comment. Math....

متن کامل

An Extremal Problem for Polynomials

Let f(z) = z" Hbe a polynomial such that the level set E = {z : |/(z)| < 1} is connected. Then max{|/'(z)| : z e E} < 2<1/")-1n2 , and this estimate is the best possible. The following question was asked in [1, Problem 4.8]. Let f be a polynomial of degree n, (1) f{z)~z», z^oo. Put Ef = {z : \f(z)\ < 1} , and assume that Ef is connected. Is it true that (2) max{\f'(z)\:z£Ef}. Pommerenke ...

متن کامل

Further Improvements of Lower Bounds for the Least Common Multiples of Arithmetic Progressions

For relatively prime positive integers u0 and r, we consider the arithmetic progression {uk := u0 + kr} n k=0 . Define Ln := lcm{u0, u1, . . . , un} and let a ≥ 2 be any integer. In this paper, we show that, for integers α, r ≥ a and n ≥ 2αr, we have Ln ≥ u0r (r + 1). In particular, letting a = 2 yields an improvement to the best previous lower bound on Ln (obtained by Hong and Yang) for all bu...

متن کامل

Asymptotic Improvements of Lower Bounds for the Least Common Multiples of Arithmetic Progressions

For relatively prime positive integers u0 and r, we consider the least common multiple Ln := lcm(u0, u1, . . . , un) of the finite arithmetic progression {uk := u0 + kr}k=0. We derive new lower bounds on Ln which improve upon those obtained previously when either u0 or n is large. When r is prime, our best bound is sharp up to a factor of n + 1 for u0 properly chosen, and is also nearly sharp a...

متن کامل

Further Improvements of Lower Bounds for the Least Common Multiples of Arithmetic Progressions

For relatively prime positive integers u0 and r, we consider the arithmetic progression {uk := u0 + kr} n k=0 . We obtain a new lower bound on Ln := lcm{u0, u1, . . . , un}, the least common multiple of the sequence {uk} n k=0 . In particular, we show that Ln ≥ u0r(r + 1) whenever α ≥ 1 and n ≥ 2αr; this result improves the best previous bound for all but three choices of α, r ≥ 2. We sharpen t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1987

ISSN: 0012-365X

DOI: 10.1016/0012-365x(87)90191-9