An extremal problem for least common multiples
نویسندگان
چکیده
منابع مشابه
A Note on Least Common Left Multiples
also Selecta, Paris, 1939, pp. 203-233. 5. G. de Rham, Sur Vanalysis situs des variétés à n dimensions, J. Math. Pures Appl. vol. 10 (1931) pp. 115-200. 6. H. Hopf und H. Samelson, Ein Satz iiber die Wirkungsrdume geschlossener Liescher Gruppen, Comment Math. Helv. vol. 13 (1941), pp. 240-251. 7. E. Stiefel, Ueber eine Beziehung zwischen geschlossenen Lie'schen Gruppen und. . . , Comment. Math....
متن کاملAn Extremal Problem for Polynomials
Let f(z) = z" Hbe a polynomial such that the level set E = {z : |/(z)| < 1} is connected. Then max{|/'(z)| : z e E} < 2<1/")-1n2 , and this estimate is the best possible. The following question was asked in [1, Problem 4.8]. Let f be a polynomial of degree n, (1) f{z)~z», z^oo. Put Ef = {z : \f(z)\ < 1} , and assume that Ef is connected. Is it true that (2) max{\f'(z)\:z£Ef}. Pommerenke ...
متن کاملFurther Improvements of Lower Bounds for the Least Common Multiples of Arithmetic Progressions
For relatively prime positive integers u0 and r, we consider the arithmetic progression {uk := u0 + kr} n k=0 . Define Ln := lcm{u0, u1, . . . , un} and let a ≥ 2 be any integer. In this paper, we show that, for integers α, r ≥ a and n ≥ 2αr, we have Ln ≥ u0r (r + 1). In particular, letting a = 2 yields an improvement to the best previous lower bound on Ln (obtained by Hong and Yang) for all bu...
متن کاملAsymptotic Improvements of Lower Bounds for the Least Common Multiples of Arithmetic Progressions
For relatively prime positive integers u0 and r, we consider the least common multiple Ln := lcm(u0, u1, . . . , un) of the finite arithmetic progression {uk := u0 + kr}k=0. We derive new lower bounds on Ln which improve upon those obtained previously when either u0 or n is large. When r is prime, our best bound is sharp up to a factor of n + 1 for u0 properly chosen, and is also nearly sharp a...
متن کاملFurther Improvements of Lower Bounds for the Least Common Multiples of Arithmetic Progressions
For relatively prime positive integers u0 and r, we consider the arithmetic progression {uk := u0 + kr} n k=0 . We obtain a new lower bound on Ln := lcm{u0, u1, . . . , un}, the least common multiple of the sequence {uk} n k=0 . In particular, we show that Ln ≥ u0r(r + 1) whenever α ≥ 1 and n ≥ 2αr; this result improves the best previous bound for all but three choices of α, r ≥ 2. We sharpen t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1987
ISSN: 0012-365X
DOI: 10.1016/0012-365x(87)90191-9